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Abstract
We present synchrotron x-ray diffraction observations from a deformation experiment on
fine-grained polycrystalline quartz using the newly developed deformation DIA apparatus.
During deformation experiments we were able to observe the elastic strain of the (100), (101)
and (112) lattice reflections. The elastic strains are typically converted into stresses and
interpreted in terms of the differential stress supported by the specimen. Consistently with
results from others obtained using this technique to deform monomineralic polycrystals, our
results show substantial variations in stress levels between grain populations. Rather than
averaging the lattice reflection stresses or choosing a single reflection to determine the
macroscopic stress supported by the specimen, we explore the use of elastic–plastic
self-consistent (EPSC) models. We are able to match the measured differential elastic lattice
strains with an EPSC model in which basal and prism 〈a〉 slips are activated. An interesting
outcome of the EPSC model is the prediction that the macroscopic stress experienced by the
sample should be greater than the stress calculated from any of the reflections that we observed.
This observation serves as a caution against using reflection stresses as a proxy for the
macroscopic stress in in situ deformation experiments.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The rheology of Earth materials governs many aspects of
Earth’s behaviour from mountain building to the mixing of
geochemical reservoirs in the mantle and is therefore a very
important field of investigation. Unfortunately, quantitative
deformation studies at conditions relevant to the earth’s interior
have been plagued with technical challenges. At very low
pressure (0.3 GPa), high precision deformation experiments are

1 Author to whom any correspondence should be addressed. Present address:
High Pressure Science and Engineering Center, University of Nevada, Las
Vegas, Box 454002, 4505 Maryland Parkway, Las Vegas, NV 89154-4002,
USA.

possible using a gas apparatus (Paterson 1990). The Griggs
apparatus, a modified piston cylinder apparatus, achieves
higher pressures by using solid confining media. However,
friction between the solid confining media and the sample
and deformation pistons compromises the precision of the
stress measurements, which are made with an external load
cell. Friction between the sample and cell parts has been
ameliorated by the use of molten salt cells (Green and Borch
1989, Gleason and Tullis 1993), but the Griggs apparatus is
still limited to confining pressures of <4 GPa. The extrusion
of samples from between the anvils of a diamond anvil cell
(DAC) has been used to study deformation at very high
pressures (e.g. Meade and Jeanloz 1988, Merkel et al 2006).
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However, DAC samples are very small, and the stress and
strain fields are complex which has limited the interpretive
power of the results. Recent technological developments in
high pressure apparatus for controlled deformation (including
the deformation DIA (D-DIA) (Durham et al 2002, Wang et al
2003), the rotational Drickamer apparatus (RDA) (Yamazaki
and Karato 2001) and a belt type deformation apparatus
(Dobson et al 2005)) have opened an increasing range of
pressures over which quantitative deformation experiments
may be conducted. These apparatus rely on in situ diffraction
(either synchrotron x-ray or neutron) to monitor the state
of stress in the sample. In the case of the synchrotron
experiments, the stress analysis technique utilizes differential
strains of individual lattice planes to calculate the sample
stress. This method is also used for analysing stress in DAC
experiments (Singh et al 1998).

A major challenge is that the diffraction data from the new
high pressure deformation experiments reveal a more complex
picture of polycrystalline deformation than was anticipated
(Li et al 2004). Stress levels calculated from different x-
ray reflections have been shown to substantially disagree
(Li et al 2004, Mei et al 2003, 2005, Weidner and Li 2006).
This is because the diffraction data is generated by individual
grains in the polycrystal and therefore reflects grain scale
phenomena rather than macroscopic properties. It is therefore
not immediately obvious to how derive the macroscopic stress
supported by the sample from the stresses measured in the
grains. Determining the method to properly interpret the
diffraction data and to cast it in terms of macroscopic stresses is
important because it is the aggregate properties that are useful
for geodynamic calculations. Fortunately, significant progress
towards this goal has already been made by metallurgists who
use neutron diffraction to study the deformation of metals at
room pressure. One of the methods that they have developed
is elastic–plastic self-consistent (EPSC) modelling. In this
paper, we present diffraction data from polycrystalline quartz
deformed at 2 GPa and 800 ◦C. We compare the observed
diffraction with predictions from an EPSC model of deforming
polycrystalline quartz and discuss the advantage of such an
approach.

2. Experimental technique

2.1. D-DIA apparatus

Experiments were carried out in the D-DIA apparatus (Durham
et al 2002, Wang et al 2003), a modified version of the DIA
apparatus (Osugi et al 1964, Shimomura et al 1985) that uses 6
hard anvils (primarily WC) to compress a cube-shaped sample
assembly. The anvils are driven inwards by two wedged guide
blocks that are forced together by a large hydraulic press.
In the DIA apparatus the anvils advance at the same rate,
but in the D-DIA small hydraulic rams incorporated in the
guide blocks allow the top and bottom anvils to be advanced
independently (Durham et al 2002, Wang et al 2003). Our
deformation experiments were conducted using the D-DIA
apparatus installed in the SAM85 press in the X17B2 hutch
at National Synchrotron Light Source at Brookhaven National
Laboratory.

Figure 1. D-DIA sample assembly. The pressure medium consists of
a 6 mm cube of boron epoxy. The interior consists of nested sleeves
surrounding a cylindrical sample. The thermocouple is introduced
through a hole drilled into the side of the assembly. The function of
each material included in the assembly is discussed in the text.

The sample assembly (figure 1) consisted of a cubic
volume of boron epoxy, a soft material that serves as the
confining medium, with a cylindrical graphite furnace in the
centre. A W3%Re–W25%Re thermocouple was introduced
from the side to measure the sample temperature. The sample
was surrounded by an additional sleeve of ductile confining
medium inside the furnace and enclosed in a 25 μm thick Ni
metal jacket. The confining medium sleeve consisted of two
parts. The lower portion was composed of 90% NaCl 10%
BN. NaCl is commonly used as a confining medium in Griggs
apparatus sample assemblies because of its low strength. For
diffraction measurements it has the additional advantage of
being relatively compliant which makes it a precise pressure
calibrant in the 2–3 GPa range. The Decker equation of state
(Brown 1999) was used to determine pressure in the NaCl. The
BN was used to suppress grain growth. The upper portion of
the confining medium sleeve was composed of a split sleeve
of magnesite that served as an x-ray window. Magnesite has
diffraction peaks that are far enough away from those of quartz
so as not to overlap or interfere. The strength of magnesite
is expected to be comparable to that of calcite, which is soft
compared to quartz. In addition, the sleeve was split to allow
the salt to intrude between the halves in order to minimize any
lateral constraints placed on the sample by the sleeve. Above
and below the sample, alumina pistons were used to transmit
the load from the top and bottom anvils to the sample. We used
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Figure 2. Diffraction geometry for D-DIA experiments. For clarity, the apparatus is not shown but the direction of the compression axis and
the sample are shown along with the orientation of the incoming x-ray beam and the position of the four detectors and the YAG screen. The
conical slit that excludes x-rays diffracting at angles other than 2θ is shown schematically.

a layer of Pt between the sample and the pistons as a strain
marker. The sample material was Arkansas novaculite, a pure
quartz aggregate with a grain size of 6–9 μm.

2.2. In situ x-ray measurements

White x-rays enter and leave the sample assembly along a
direction perpendicular to the compression axis via the spaces
between the side anvils. Transparent anvil tips (cubic BN) are
used on the side anvils to allow the diffracted x-rays to be
observed at a variety of angles. At X17B2 the diffracted x-rays
are measured using four energy dispersive detectors (figure 2).
Two of the detectors (det 1 and det 2) measure diffraction
from crystallographic planes that are nearly perpendicular to
the compression direction. The other detectors (det 3 and det
4) measure diffraction from crystallographic planes that are
very close to a plane defined by the direction of the x-ray beam
and the compression direction. The small angular differences
are due to the diffraction angle which is ∼3.25◦. The pairs
of detectors measure redundant information which is valuable
both for alignment and for data quality control. A conical
slit (Durham et al 2002) that sits up-stream of the detectors,
determines the two theta angle of the diffracted x-rays and
eliminates most of the diffraction from the sample assembly.
Because the x-ray source is white, there will be a wavelength
that fulfils the Bragg condition for each set of lattice planes
in the sample. Thus each detector measures a full powder
pattern from the sample as well as from the parts of the sample
assembly in the region from which diffraction is observed (this
generally includes the confining medium inside the furnace but
not the furnace itself). Lattice spacings are determined from
the diffraction pattern via calibration spectra that are collected
at the start of each experiment. There is very little drift in the
detector electronics so that calibration spectra collected 24–
48 h apart are essentially identical.

Strain in the sample was measured by comparing
the length of the sample in radiographic images made from
the transmitted x-ray beam (Vaughan et al 2000, Li et al

2003). Radiographic images are achieved by photographing
the fluorescence of a YAG screen that is located at the centre of
the conical slit. Thin Pt metal foils above and below the sample
absorb the direct beam allowing the dimensions of the sample
(which is x-ray transparent) to be imaged.

2.3. Experimental procedure

The experiment was compressed cold to 1.5 GPa and then
heated to 950 ◦C for a one hour soak, which allowed stress
in the sample accumulated during cold loading to relax.
The sample was then cooled to 27 ◦C at pressure in order
to accommodate an interruption in the availability of the
synchrotron beam. The sample was then heated to 800 ◦C and
the deformation rams were advanced at a rate that produced
a sample strain rate of 10−5 s−1. A radiograph was taken
before the rams started to advance and then alternating spectra
from the sample and radiographs were taken. Initially a series
of five 60 s spectra were taken in between each radiograph
to capture the rapid changes in the stress state during elastic
loading. Later spectra were collected for 300 s. When the
sample reached 7% strain the power was quenched and the
experiment depressurized. Once the press was opened spectra
were collected from the sample and the alumina diffraction
standard.

2.4. Data analysis

Peaks from the spectra (figure 3) were individually fit
using Plot85 which uses a pseudo-Voigt peak fitting routine.
To calculate differential lattice strains d-spacings from the
detectors 1 and 2 and detectors 3 and 4 were averaged. The
difference between detector 1 and detector 2 as well as the
difference between detectors 3 and 4 is used as a measure
of uncertainty. Macroscopic sample strain was determined
from the distance between the Pt foils for each radiograph.
The creation time of the image file was used as a proxy for
the time at which the radiograph was taken since files were
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saved within 10–20 s. The midpoint time of the spectra
collection period was chosen as the time point associated
with each spectra. The macroscopic strain associated with
each spectra was determined by linear interpolation between
strain/time data points. The sample began the deformation
experiment experiencing a hoop stress due to the greater
thermal expansivity of the salt relative to the quartz and
alumina pistons. Therefore, we choose the average time when
the d-spacings in all four detectors were equal to be the time at
which strain was considered to be zero.

Stresses and pressures were calculated using the elastic
constants and lattice parameters found in table 1. Although
pressure during the experiment was determined from the NaCl
pressure calibrant, for the analysis of the quartz spectra, we
used the sample spectra to determine pressure. This was
calculated using a third order Birch–Murnaghan equation of
state applied to the unit cell volume as measured in each pair of
detectors. The ‘hydrostatic’ pressure (P) was then calculated
from P = (P3 + 2P1)/2 where P1 is the pressure from
detectors 3 and 4. P3 is the pressure from detectors 1 and 2.

3. Results and discussion

The d-spacings for the (100), (101) and (112) reflections
measured at each of the four detectors as a function of time
during the deformation portion of the experiment are shown
in figure 4. The calculated ‘hydrostatic’ d-spacing, dhkl

P =
(dhkl

3 + 2dhkl
1 )/3 where dhkl

1 is the average d-spacing for
detectors 3 and 4 and dhkl

3 is the average for detectors 1 and
2, is also plotted. When the rams first began to advance the d-
spacings for detectors 3 and 4 were smaller than those observed
in detectors 1 and 2. As mentioned above, we believe this
state of stress was caused by the greater thermal expansion of
the salt relative to the quartz and alumina. The ‘hydrostatic’
d-spacings decreased during the experiment reflecting the
increase in mean stress as σ3 increases but also a rise in
pressure in the cell as the top and bottom anvils advance. The
pressure recorded by the NaCl confining medium during the
deformation rose from an initial value of 1.8 to 2 GPa. The
uncertainty in d-spacing due to peak fitting is a small fraction
of height of the plot symbol. This was evaluated by repeated
fitting of peaks and by comparing the same peak fit by different
individuals. Detector misalignment would cause systematic
differences between pairs of detectors for all peaks—which
is not observed. We interpret the differences in d-spacings
observed in the pairs of detectors as reflecting random error
associated with the finite number of grains contributing to each
reflection.

3.1. Stress measurement from diffraction data

Stress measurement from diffracted x-rays is based upon the
differences in lattice spacing measured as a function of the
azimuthal angle, ψ , between the diffraction vector and loading
direction (figure 2).

As discussed above, in our case, the x-rays enter the
sample perpendicular to the compressive axis and leave the
sample by a small diffraction angle, 2θ -where θ = 3.25◦. For a

Figure 3. Example of (100) diffraction peak as measured in each
detector at a macroscopic strain of 0.019. Spectra were collected for
60 s. The measured differential lattice strain is 0.0102.

Figure 4. Lattice spacings for the (100), (101) and (112) reflections
as a function of time during the deformation experiment. Detectors 1
and 2 measure diffraction from lattice planes that are nearly
perpendicular to the compression direction. Detectors 3 and 4
measure diffraction from lattice planes that are parallel to the
compression direction. The calculated ‘hydrostatic’ d-spacing is
shown as a dashed line.

randomly oriented, fine-grained polycrystal under hydrostatic
conditions, the d-spacings observed by all the detectors will
be the same. Non-hydrostatic stress in the sample will cause
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Table 1. Elastic constants and lattice constants used in calculations.

C11 C33 C44 C12 C13 C14

(GPa)
a87.7 a106.3 a59.0 a6.8 a12.3 a−18.7

dC11/dT dC33/dT dC44/dT dC12/dT dC13/dT dC14/dT
(GPa K−1)

a−0.0076 a−0.0303 a−0.0153 a−0.0265 a−0.0124 a0.0

dC11/dP dC33/dP dC44/dP dC12/dP dC13/dP dC14/dP
b3.28 b10.84 b2.66 b8.66 b5.97 b1.93

α0 α1 K0(T0) (GPa) K ′ dK/dT (GPa K−1)
c9.3859 × 10−6 c8.5404 × 10−8 d37.12 d5.99 a−0.0153

a (Å) c (Å)
e4.91344 e5.40524

a Quoted or derived from Ohno (1995).
b McSkimin et al (1965).
c Carpenter et al (1998).
d Angel et al (1997).
e LePage and Donnay (1976).

lattice spacings to vary as a function of their angular orientation
in the sample. If the stress field experienced by each crystal
is the same (a Reuss state) and if this field has cylindrical
symmetry (as in the D-DIA) then difference in the d-spacing
observed at ψ = 0◦ and at 90◦ can be used as a measure of
the differential stress supported by the polycrystal (Weidner
et al 1992). This technique for stress measurement has become
the standard method for calculating stresses from large-
volume high pressure deformation experiments. Equations
for calculating stresses from the differential strains of lattice
planes using single crystal elastic constants have been derived
for all crystal systems by Singh et al (1998).

For the subpopulation of grains contributing to a given
reflection (hkl), the differential lattice strain is calculated from
the average d-spacing for each set of detectors by:

εhkl = (dhkl
1 − dhkl

3 )/dhkl
P . (1)

The subpopulation differential stress τ hkl , defined as

τ hkl = σ hkl
3 − σ hkl

1 , (2)

where σ hkl
3 and σ hkl

1 are the maximum and minimum
compressive stresses, is calculated assuming a Reuss stress
state, from εhkl by:

τ hkl = (2Ghkl
R )εhkl (3)

where (2Ghkl
R )−1 is the diffraction elastic constant. For point

group 32 (for which C52 = 0) and our diffraction geometry,
the diffraction elastic constant is calculated as

(2Ghkl
R )−1 = [(2S11 − S12 − S13)

+ l2
3(−5S11 + S12 + 5S13 − S33 + 3S44)

+ l4
3(3S11 − 6S13 + 3S33 − 3S44)]/2

+ 3l2l3(3l2
1 − l2

2 )S14 (4)

where l1 = √
3ch/M , l2 = c(h + 2k)/M , l3 = √

3al/M ,
M2 = 4c2(h2 + hk + k2) + 3a2l2, h, k and l are the Miller
indices of the lattice plane, and a and c are lattice parameters

Figure 5. Differential stress calculated from the differential lattice
strains for the (100), (101) and (112) reflections of quartz plotted
versus the macroscopic strain. The macroscopic strain was
determined by measuring the change in length of the sample
recorded in radiographic images. The calculation assumes a Reuss
state of stress in the polycrystal.

for the trigonal cell (Singh et al 1998). We obtained the elastic
compliances Si j through inverting the stiffness Ci j matrix
which was calculated for the pressure and temperature of each
spectra using the constants in table 1.

Figure 5 shows the calculated subpopulation differential
stress (for an assumed Reuss state) for the quartz (100),
(101) and (112) reflections in our experiment plotted versus
macroscopic sample strain. The first feature one notices is that
the stress calculated from each lattice reflection does not match
the stress from the other lattice reflections and in fact, differ by
a factor of 1.5. This wide variation in reflection stresses has
also been observed in MgO (Li et al 2004, Weidner and Li
2006), fayalite olivine, (Chen et al 2006) and hcp-Co (Merkel
et al 2006), and is attributed to the fact that plastic deformation
places the state of stress outside of Reuss Voigt bounds (Li et al
2004, Weidner and Li 2006, Chen et al 2006).
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Figure 6. Diagram illustrating the relationship between the diffraction geometry for grains contributing to a given reflection and the
orientation of a slip system within those grains. All grains contributing to the reflection in detectors 1 and 2 will experience the same resolved
shear stress, where grains reflecting into detectors 3 and 4 will experience a variety of resolved shear stresses depending on their grain
orientation.

Several questions arise from the results presented in
figure 5 and those of other studies (e.g. Weidner and Li 2006,
Chen et al 2006, Li et al 2004). First, what does it mean
physically to be outside of the Voigt Reuss bounds? And
second on a more practical note, how does one derive the
true macroscopic load experienced by the sample from the
variety of reflection stresses? In answer to the first question,
it is important to recall that deformation, at the temperature
at which this and many other D-DIA studies have been
conducted, is controlled by dislocation glide. In a randomly
oriented polycrystal some grains will be more favourably
oriented for slip than others and the differential stress within
those crystals will be lower than that in those crystals that
are in a relatively hard orientation. In addition, crystals
that have flowed will shift additional loads on to crystals in
stronger orientations. Therefore, the assumption of a Reuss
stress state is violated. Furthermore, the method by which
stress is calculated assumes that the stresses in various grain
populations that contribute to any given reflection observed in
the pairs of detectors, are related in some simple way when
in fact they are not. For grains diffracting into detectors
1 and 2 (ignoring the diffraction angle which is small), all
grains contributing to a given reflection will experience the
same resolved shear stress on their slip systems (figure 6).
However, for any given reflection the resolved shear stress on
the slip systems in contributing grains will be a function of
the azimuthal angle ψ (between the diffraction vector and the
loading direction). Furthermore, if the slip plane is not parallel
to the diffracting plane, the resolved shear stress will also vary
as a function of φ (the angle between the slip direction and
the loading direction measured about the pole to the diffracting

plane) (figure 6). Thus detectors 3 and 4 at ψ = 90◦ may be
measuring a population of grains in a variety of stress states.
So for example, if the grains contributing to the reflection
at ψ = 0◦ are in a strong orientation and the majority of
grains contributing to the reflection at ψ = 90◦ are in a weak
orientation, the differential stress calculated by comparing the
d-spacings of these two populations would under estimate
the macroscopic stress. One could easily imagine a scenario
where the stress was over estimated instead. The complexity
of analysing diffraction in the transverse direction has also
been recognized by those using neutron diffraction to study
deformation in metals (Daymond 2006, Oliver et al 2004).

From the discussion above, it is clear that the method
we use for calculating stress from lattice strains needs to take
plastic deformation into account. One such method is elastic–
plastic self-consistent (EPSC) modelling. EPSC modelling
also provides a means for calculating the macroscopic load
experienced by the sample.

3.2. EPSC modelling

Self-consistent models provide an alternative method for
calculating aggregate properties from single crystal elastic and
plastic properties. First introduced by Kroner (1961), self-
consistent models, are based on Eshelby’s theory of inclusions
(Eshelby 1957), which shows that an elliptical inclusion in a
homogeneous matrix will experience uniform stress and strain.
Elastic–plastic self-consistent models consider the elastic and
plastic behaviour of a polycrystal by examining the behaviour
of large numbers of individual grains. Each grain is treated as
an elliptical inclusion within an infinite homogeneous matrix,
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which in turn, has the average properties of all of the grains in
the polycrystal. Each grain is described by its orientation, its
single crystal elastic tensor and possible slip systems, each with
its own critical resolved shear stress (CRSS). An increment
of strain is applied to the homogeneous matrix that transmits
stress to the grain. The grain responds elastically or plastically
depending on its orientation and the CRSS of its slip systems,
while also fulfilling compatibility criteria. The behaviour of
the homogeneous matrix is the sum of the behaviours of the
remainder of the grains and must be recalculated after each
grain is deformed. Thus the model iterates until it converges for
each deformation step. Work hardening may also be included
in the model. Model output includes stresses and strains
for each grain as well as average stress and elastic strains
for populations of grains that contribute to various diffraction
peaks. The macroscopic stress and strain for the aggregate
are also calculated. Therefore, model results can be directly
compared with diffraction results.

EPSC models were first employed for describing in situ
diffraction observations (in this case, from neutrons) of
deforming austenitic steel and copper by Clausen (1997).
Clausen found that the behaviour of individual diffraction lines
from the deforming steel (Clausen et al 1999) and copper
were better described by an EPSC model rather than by an
implementation of the Taylor or Sachs models. In particular,
Clausen observed that lattice strains for individual reflections
were no longer linear functions of the macroscopic strain once
plastic deformation began. In addition, the deviation of the
lattice strain from the macroscopic stain was different for
each lattice reflection. The EPSC model was able to match
this aspect of the behaviour and predict which reflections
would experience more and less strain. EPSC models do not
take into account grain to grain interactions, do not allow
for rate dependence of plastic flow (for further discussion
see Gloaguen et al 2006) and have not been successful in
making quantitative predictions of the behaviour of individual
diffraction lines (Daymond and Priesmeyer 2002, Daymond
2004). They do however, succeed in making qualitative
predictions (±30%) of diffraction behaviour (Daymond 2004),
and are reasonably successful in describing the evolution of
LPO in deforming metals (Clausen 1997, Wang et al 2002).
Furthermore, they have provided a powerful framework for
the analysis of polycrystalline deformation (Daymond and
Priesmeyer 2002). Self-consistent models are now commonly
used to interpret neutron diffraction data from deforming
metals (e.g. Agnew et al 2006, Daymond and Bonner 2003,
Holden et al 2002, Cho et al 2002, Daymond et al 2000)
including the partitioning of stress and strain between grains in
two phase mixtures (Korsunsky et al 2002, Oliver et al 2004)
and between matrix and included phases (Dye et al 2001).
An EPSC model was used to fit differential elastic strains
measured for deforming MgO at high pressure in a D-DIA (Li
et al 2004, Chen et al 2006). In this study the ratio of CRSS for
the slip systems was used to match the difference in differential
lattice strains between the (111) and (200) reflections.

We used an EPSC code provided to us by C N Tome
(Turner and Tome 1994) in order to interpret the diffraction
results from our sample and estimate the macroscopic stress

Table 2. Parameters used in EPSC models shown in figure 7.

Rhomb 〈a〉 Prismatic 〈a〉 Basal

CRSS
(GPa)

Hardening
slope

CRSS
(GPa)

Hardening
slope

CRSS
(GPa)

Hardening
slope

Model 1 0.12 1.6 Not activated Not activated
Model 2 0.13 1.6 Not activated 0.25 1.5
Model 3 0.13 1.6 0.22 0 Not activated
Model 4 Not activated 0.15 0 0.16 1.8
Model 5 0.13 1.6 0.18 0 0.27 1.5

supported by the sample. Coding for trigonal symmetry was
not implemented in this version of the code so hexagonal
symmetry was used for the model. We tested a variety of
models using the basal, prismatic 〈a〉 and rhomb 〈a〉 slip
systems that are known to commonly operate in quartz. We
modelled each slip system operating alone, in combinations of
two and all three together. For each model we adjusted the
CRSS and hardening slope for each slip system to obtain the
best fit to the data. For basal and prismatic 〈a〉 slip operating
alone we were not able to reproduce the observed yielding
behaviour. The best fits for the other models are presented
in figure 7. The CRSS and hardening slope used in each
model are given in table 2. For models in which prismatic
〈a〉 slip is not operating (models 1 and 2) the (100) differential
lattice strain overshoots the data by 3% strain. For models in
which basal slip does not operate (models 1 and 3), the (112)
differential lattice strain overshoots the data by 3% strain. The
model that does the best job of matching the (100) differential
lattice strain and also keeps the (101) and (112) differential
lattice strains close together uses basal and prismatic 〈a〉 slip
(model 4). Very similar results can be produced using all
three slip systems (model 5). The basal slip system is known
to be active at low temperatures with prismatic 〈a〉 slip and
rhomb slip becoming active at somewhat higher temperatures
(Kocks et al 1998, Tullis 2002). Hirth and Tullis (1994)
observed microstructural evidence for basal and prismatic 〈a〉
slip operating in quartz at a similar temperature, pressure and
strain rate. Figure 7(F) shows the macroscopic load associated
with the 5 models shown in figure 7(A)–(E). The difference
in the model macroscopic loads between the strongest and the
weakest model is only 0.2 GPa (12%) at 7% strain and the
difference between the model macroscopic loads for the two
models that most closely reproduce the data only differ by
0.08 GPa (5%) at 7% strain.

In order to illustrate the relationship between the
macroscopic load and the reflection stresses we used model
4 to calculate reflection stresses for 10 quartz reflections with
d-spacings greater than 1.65 Å; the region of the spectra that
we can work with most readily. Note that these reflection
stresses are not quite comparable to the reflection stresses
plotted in figure 5 because those stresses were calculated
assuming a Reuss state of stress. The reflection stresses
along with the macroscopic stress are plotted in figure 8.
Although individual reflection stresses are both larger and
smaller than the macroscopic stress, the majority of reflections
have lower stresses, including all three that we measured in
our experiment. Four (including the (101) which is the most

7
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Figure 7. (A)–(E) Comparison of EPSC model results with observed differential lattice strains for the (100), (101) and (112) reflections
of quartz. The parameters used in each model are listed in table 2. (F) shows the macroscopic stress supported by the sample for each of
the models.

intense reflection in the quartz spectra) of the reflections are
∼0.5 GPa lower than the macroscopic stress. It is important
to keep in mind that the macroscopic stress is governed by the
cooperative behaviour of all the grains in the polycrystal but
diffraction can only sample a small subset of the grains. The
stress state in these grains my not be representative of the full
population. Thus there is a serious hazard in taking the stress
calculated from one or a small set of reflection (based on ease
of measurement) as a proxy for the macroscopic load supported
by the sample.

4. Conclusion

New in situ high pressure deformation techniques offer us an
unprecedented way to examine the behaviour of polycrystalline
materials at the grain scale during deformation. However, the
derivation of macroscopic load on the specimen from reflection
stresses is complicated by several factors. First, various
subpopulations of diffracting crystals experience different
levels of stress during deformation, which violates the Reuss
assumption typically made in calculating reflection stresses
from differential lattice strains. Secondly, reflection stresses

Figure 8. Differential stress calculated using EPSC model 4 (see
table 2 for parameters used) for 10 quartz reflections. The calculated
macroscopic stress supported by the sample is shown as a solid line.
Note that most of the reflection stresses fall well below the
macroscopic stress.

may give a poor approximation of the macroscopic stress if
the full range of lattice reflection stresses is not measured.
We believe that in order to properly interpret lattice strain
data in terms of stress a model that takes the anisotropy of

8
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plastic deformation into account is required. EPSC models,
which have been extensively developed by metallurgists offer
a good place to start at this task and offer a useful framework
for testing hypothesis regarding deformation of polycrystalline
materials at high pressure.
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